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Applications in engineering, science and technology within undergraduate 
programmes can be difficult for students to understand. In this paper, new  
results are presented which go some way to demonstrate and explain the 
problems faced by students in linking mathematical models to real-world 
applications. The study is based on student responses to multiple-choice 
questionnaires on mathematical modelling problems, student reflective 
questionnaires and subsequent interviews. The processes used by students to 
solve such problems are classified and links between these process levels, credit  
and seven other behavioural descriptors are discussed. 

 
 
 

1. Mathematical models and modelling 
Students of engineering, science and technology are familiar with mathematical 

models and their use for their own conceptual development within the discipline. 
Mathematical modelling, which involves moving from a real-world situation to a 
model, working with that model and using it to understand and to develop or solve 
the real-world problems, has long been a feature of courses in engineering, science 
and technology as well as in mathematics. The activity is recognized in curricula 
through investigations and projects, undertaken either as a group or individually 
and, while the focus is on the modelling itself, there is also the potential to enhance 
the performance in mathematics of students generally. Indeed, Matos [1] rein- 
forces this view: 

. .  .mathematical modelling.. .[is].. .an activity where students give  meaning 
to  ideas,  problems  [and]  mathematical  and  non-mathematical  concepts. 
[1, p. 26] 

This broader emphasis, inclusive of mathematics and beyond mathematics, is 
particularly important in engineering, science and technology where transitions 
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between real-world problems and the model are the substance of the discipline. 
The processes by which students build mathematical ideas and structures within 
scientific disciplines are complex, as are the teaching and learning paradigms 
within which they work. In teaching, particularly in engineering, science and 
technology, the presentation of models and their critical analysis has been 
prevalent, although the increasing use of projects and investigations has led to 
the definition and examination of the processes through which the successful 
modeller passes. The cyclic process can be said to consist of several stages: 

real world problem statement; formulating a model; solving mathematics; 
interpreting outcomes; evaluating a solution; refining a model; real world 
problem statement... [2], 

and a further reporting stage occurring after evaluating a solution. 
It can be noted here that, while written and oral reports in various forms are an 

established part of the scientific method adopted in engineering, science and 
technology, they also provide opportunities to consider communication in mathe- 

matics and communicating mathematics more directly and in particular, through 
the activity of mathematical modelling, communicating mathematical meaning [3]. 

Of course, the solving mathematics stage is central to student success in 
mathematical modelling though, unfortunately, students can be found wanting 

in this area. Anderson et al. [4] found that even final year mathematics under- 
graduates tended to memory dump in attempting to solve examination questions 
rather than retaining and building upon a strong and coherent structure in mathe- 
matics. From an extensive study of problem-solving, Galbraith and Haines [5] 

describe a hierarchy of procedural and conceptual skills. They reported on 
mechanical, interpretive and constructive problem-solving skills where the relative 
degree of success on these three different types of problem is 

mechanical > interpretive > constructive 

and demonstrated the validity of this taxonomy. The research of Anderson et al. 
[4] and Galbraith and Haines [5] is concerned with the mathematical structures 
developed and deployed by students in solving mathematics problems. Their 
research shows clear behavioural aspects linking the two, which are most apparent 
in the deployment of mechanical skills. On the other hand, Kent and Noss [6] 
examined perceptions of engineering undergraduates towards mathematics in a 
study of the use of technology as a bridge between mathematics and engineering. 
In this environment, they suggest that increasingly the teaching of mathematics to 
engineers will be a succession of recipes wrapped in a computational dressing with 
an implication that less emphasis may be placed on interpretative and conceptual 
skills [5] unless these are targeted in teaching. The results reported by these 
authors [4–6] capture core problem-solving behaviours of students, which impact 
on mathematical modelling competencies at the solving mathematics stage of the 
modelling cycle. 

It is, however, the interface between the real world problem and the mathe- 
matical model that presents difficulties for students. The transition from the real 
world to the mathematical model and (having considered the model and its 
solution(s)), the transition from that solution back to the real-world problem, 
might seem to be straightforward to the expert modeller but for a student new to 
mathematical modelling, this is not necessarily so. 
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2. Expertise in problem solving and becoming an expert modeller 
Successful mathematical modelling involves an ability to move between the real 

world and the mathematical world, bearing both in mind. The modeller needs to 
consider the real-world problem and decide how to  mathematise  it,  deciding 
which aspects of the real-world problem are relevant and which not—a process of 
abstraction—and deciding what mathematical principles and techniques to bring 
to bear, even when technology is used to apply them [6]. The solution also needs to 
be checked against the reality provided by the engineering, scientific or technology 
context and modified if necessary. These processes are demonstrably difficult for 
students in a variety of countries who are new to modelling. Haines and Crouch [7] 
and Haines et al. *8+ report such difficulties among new undergraduates in the UK, 
Ikeda and Stephens [9, pp. 381, 382] recorded problems among Japanese students 
engaged in relatively open modelling tasks and problems were also found by 
Klymchuk and Zverkova [10] in a study of 500 students from 14 universities in 
Australia, Finland,  France,  New  Zealand,  Russia,  South  Africa,  Spain,  Ukraine 
and the UK. 

Why is it that students of engineering science, technology and allied subjects 
find it difficult to move freely between the real world and the mathematical world, 
when by their own choice of applied discipline one might have expected strong 
engagement in modelling or pseudo-modelling tasks? Formal education usually 
leads to a greater ability to abstract, because practice is provided in thinking about 
topics in a decontextualised way [11, p. 473], but there are associated problems 
in linking this decontextualized knowledge back to the real world.  One  reason 
might be that in abstraction and decontextualization, the rich connections that 
provide the motivation for the subject  discipline are lost.  Nunes and  Bryant [12, 
pp. 234–348] in a review of research from various countries, conclude that the 
mathematical capabilities of children are greatly influenced by whether they are in 
a real world or a classroom context. They note difficulties in transferring skills and 
in knowledge from one context to the other, and particularly in bringing under- 
standing from the real world into the classroom, where children may define their 
competence of maths as their ability to use socially approved solutions. Such 
solutions are very  likely  to focus on the results  of abstractions mentioned  above. 
A similar effect was found by Christiansen [13] among 10th  grade  Swedish 
students, on a mathematical modelling course, where the classroom context made 
it difficult for students to make successful links between the real world and the  
mathematical world, instead seeing the problem as one of finding out what 
procedures the teacher wanted them to apply. Although the experiences described 
above [12, 13] are pre-university, they do impact on how undergraduate students 
tackle mathematical modelling when they eventually reach university. 

Many students’ difficulties may be due to their being comparatively new to 
mathematical modelling. Such novices, in a variety of fields,  tend  to  perform 
poorly compared to experts, as may be expected. This seems to be due to novices 
possessing a much smaller and more poorly structured knowledge base, making it 
difficult for them to know which information is relevant, what type of problem 
they are dealing with and to know which techniques  and  procedures to apply, 
while experts generally have the experience and knowledge to do this successfully 
[14]. For instance novices tend to apply familiar procedures to algebra problems 
rather than relevant ones and be unable to understand the relationships among the 
variables unless these are made explicit [15]. Novices, unlike experts, cannot 
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readily distinguish the relevant from the irrelevant as they have difficulty accessing 
and linking knowledge [14, 16]. Even if they can access relevant knowledge, they 
find it difficult to keep it all in mind *17+. The process of abstraction (identifying 
relevant problem features and choosing and testing a restricted set of hypotheses to 
explain them) is particularly difficult for novices [16, 18, 19]. 

Novices have difficulty recognizing types of problem and therefore in accessing 
associated solutions. With physics problems, for example, they tend to rely on the 
words and surface features in the problem statement and categorize problems 
according to these surface features rather than underlying principles, as experts do 
[20]. They spend less time  planning and tend  to approach the problem differently 
to experts. When solving physics problems, novices look for givens and unknowns 
and then immediately generate equations containing the unknown, working back- 
wards from the goal in a way that is often less productive, especially with more 
complex problems [17, 20, 21]. When novices do appear, like experts, to have 
a tendency to work forwards from the problem statement, as when solving 
mechanics problems, they are not very competent at it [22]. When solving mathe- 
matics and physics problems, novices tend to press on regardless, not realizing 
when they have misunderstood, whereas experts tend to know when they have 
started on an unproductive path and backtrack [23, 24]. 

Many of these novice behavioural descriptors are commonly recognized in new 
undergraduates whose degrees require them to do mathematical modelling. Some 
of the expert descriptors are recognized among more experienced undergraduates 
in later years and even more in research students [8]. 

 
 

3. Modelling behaviours among new undergraduates 
So that student achievement can be recognized, it is necessary to understand 

the developmental processes through which the learner passes in moving from 
novice behaviour to that of an expert. To investigate aspects of novice modelling 
behaviour, within a wider study in mathematical modelling, Haines et al. [8] used 
multiple-choice questions developed in analogue pairs, a student reflective ques- 
tionnaire on individual answers to four unrelated multiple-choice questions and an 
interview by a tutor following the completion of the four multiple-choice questions 
and the reflective questionnaire to try to understand these processes. The reflective 
questionnaire and subsequent interview enabled a classification of the processes 
used by undergraduates (novices) and engineering research students (experts) in 
solving the multiple-choice questions at three levels: 

Level a where there was clear evidence that they took into account the relation- 
ship between the mathematical world and the real world input to the 
model; 

Level b where there was limited evidence that they took into account the relation- 
ship between the mathematical world and the real world input to the model, 
such as 

(i) mentioned in interview that they had thought about the model, but the 
reflective questionnaire offers little evidence that this had been done, or 

(ii) had obviously thought about the model, confirmed in the reflective 
questionnaire or in the interview, but lacked knowledge of the real 
world and/or mathematics to solve the problem effectively; 
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Level c (i) no-evidence that the relationship between the mathematical world and 
the real-world input to the model had been taken into account nor that 
a modelling perspective had been adopted, or 

(ii) the problem had been looked at simply in real-world terms, or entirely 
in terms of reasoning or mathematics (according its position in the 
modelling cycle) without reference to the needs of the model nor to the 
interface between the mathematics and the real world. 

An analysis of student responses among 25 novices, using this classification, 
demonstrated clearly that these students have difficulty in linking  the real world 
and the mathematical model (Table 1) [8]. 

 

Questions a b c location in modelling cycle 

1,2 0.18 0.18 0.64 real world to model 
3,4 0.00 0.18 0.82 real world to model 
5,6 0.00 0.33 0.67 specifying model 
7,8 0.58 0.17 0.25 specifying variables 
9,10 0.91 0.09 0.00 constructing equations 
11,12 0.33 0.58 0.08 maths to real world 
13,14 0.91 0.09 0.00 graphs to real world 
15,16 0.58 0.08 0.33 using mathematics 

Table 1.    The proportion of student responses classified a, b and c (n    11 or 12). 
Proportions > 0.5 highlighted [8]. 

 

This paper reports on further analysis, for the research tools previously 
employed, enabling a consideration of student responses to nine descriptors of 
student behaviour: 

1. the process (a, b, c) used by the students; 
2. the credit that their chosen answer attracted using partial credit model 

(0, 1, 2); 
3. whether the multiple-choice questions were easy or hard to understand; 
4. whether the students regarded the multiple-choice questions as real 

world problems; 
5. whether they found the multiple-choice questions interesting; 
6. whether or not the students considered that the multiple-choice questions 

were located in mathematics as a discipline; 
7. the time that students took to choose their answer from the five available 

options; 
8. the ease with which they made that choice; 
9. the confidence that students had in their chosen answer being a good one. 

Student responses on these  nine  descriptors  were  analysed  from  three  points 
of view: (i) an overall perspective; (ii) an individual student perspective, and 
(iii) a modelling cycle perspective. The correlation analysis led to the following 
results: 

 
 An overall perspective 

In this section the 92 individual responses made by 23 students are considered. 
There is a connection between the process used by the student to solve the 
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problem and the marks obtained for the answer. It is likely therefore, that 
encouraging behaviour at higher process levels will lead to higher credit (correla- 
tion 0.45). It was also found that there is a moderate correlation (0.41) between the 
process level and the students’ view as to whether the problem was located within 
mathematics as a discipline, but the nature of that link (if it exists) is far from clear. 
That students think the  multiple  choice  questions  are  easy  to  understand  did 
not appear to influence credit, perhaps reflecting that novices often  think  they 
have understood a problem when they have not entirely done so. Thinking the 
question was easy to understand did, however, correlate with their confidence in 
their chosen answer (0.46) and not unexpectedly with the ease with which they 
were able to choose their answer (0.49). A link between the ease with which they 
were able to choose an answer, and confidence in that answer, is also confirmed 
(0.49). All these latter behaviours suggest that, given contextual differences in 
science and engineering and diversities amongst students, it  is  imperative  that 
they can understand and identify with the problems. 

 
 A student perspective 

In this section the consolidated responses for each of our 23 students on four 
multiple-choice questions are considered. The process used by the student to solve 
their four problems and the marks obtained for that answer are linked with the 
implication that behaviour at higher process levels will lead to higher credit (0.40). 
Such process behaviour instils confidence in their chosen answers (0.55) and the 
ease with which those answers were chosen (0.62). Among individual students 
there is little evidence of a link between the process level and the students’ view as 
to whether the problems were located within mathematics as a discipline, lending 
support to a view that the nature of such connections is far from clear. Again, that 
students find the multiple choice questions easy to understand did not appear 
to influence credit, but it did correlate with the ease with which they were able to 
choose their answer (0.50). The link between the ease with which they were able 
to choose their four answers, and confidence in those answers, is strong (0.56). 
Here there is some evidence that it is harder for students to succeed when faced 
with real-world problems, such as are common in science and engineering. There 
is a weak but significant negative correlation between obtained credit and the 
students’ perception that the questions are real world problems ( 0.36), so that 
when faced with practical real world problems, students are less likely to succeed. 
There was further evidence of anxiety among students when faced with problems 
that they regard as located in mathematics. This is demonstrated in weak but 
negative correlations between ‘in mathematics’ and six of the remaining eight 
descriptors. Generally speaking, it appears that some expert behaviours are not 
yet fully developed, indicating a weak knowledge base and a lack of experience in 
abstraction. 

 
 A modelling cycle perspective 

Real world to mathematical world.    In this section the consolidated responses 
to questions 1–4, which were all concerned with moving from the real world to the 
mathematical world are considered. There is a connection between the process 
levels at which students operate and credit obtained (0.53); however, this simply 
indicates that behaviours using process ‘a’ (taking into account the relationship 
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between the mathematical world and the real-world input) will result in higher 
credit that than those using process ‘b’. The process  classification  (Table  1) 
requires continual referencing and reinforcement between the real-world problem 
and the mathematical model. It is clear that some of the students showing some 
evidence of expert behaviours can indeed move successfully from the real world to 
the mathematical model, but most cannot yet manage it; indeed there is evidence 
that higher process levels are related to a perception that the problem is not in 
the real world (   0.56). Higher process levels might also link with the ease with 
which the answer was chosen (0.39), although many students have misplaced 
confidence in their answers; there is a weak negative correlation between credit 
and students’  confidence  in  their  chosen  answer  (  0.24).  This  could  suggest 
that most students cannot keep the needs of the real world and the mathematical 
model in mind at once. There are, in this part of the modelling cycle especially, 
stronger links between whether or not the  questions  were easy  to  understand 
and confidence in the chosen answer (0.69), the ease with which the answer was 
chosen (0.56) and the time taken to choose that answer (0.54). There is also some 
evidence of a relationship between the time taken to choose an answer and credit 
(0.40), although reasons for this are not apparent. One can understand a link 
between time taken to choose an answer, the ease of choosing that answer (0.52) 
and confidence in that answer (0.46), and also between the ease of choosing an 
answer and confidence in that answer (0.55). Once more, expert behaviours are 
observed in some students, but this is hampered by lack of knowledge and 
inexperience in abstraction at this stage of the modelling cycle. 

 
Formulating and working with a mathematical model. In this section the 

consolidated responses to questions 5–10, which were all concerned with formulat- 
ing and working with a mathematical model, are considered. In this part of the 
modelling cycle students are in more familiar territory working within  mathe- 
matics and links between process and credit are strong (0.51). However, as in the 
early part of the modelling cycle, the achievement of credit, and student confidence 
are not linked strongly. In fact, in this area, confidence appears to be related simply 
to whether or not the students found the question easy to understand (0.57) and to 
the ease with which they were able to choose an answer (0.54). There is evidence, 
however, that credit is linked to the time taken to choose an answer (0.43), which 
could be a manifestation of process and the skills  used to solve the problems. 
Higher skills levels and increasing certainty about method and methodology would 
lead to more straightforward choices among the options given and is supported 
by the correlation between time to choose an answer and ease of making that 
choice (0.51). 

 
Mathematical model to the real world. In this section the consolidated 

responses to questions 11–16, which were all concerned with moving from the 
mathematical model to the real world, are considered. At the end of the modelling 
cycle, higher processes are more in evidence but this does not strongly correlate 
with credit (0.31) indicating weaker links here than in other parts of the cycle. The 
stronger links between process and a student’s interest in the problem (0.49) and 
between process and a student’s confidence in their chosen answer (0.53) provide 
evidence of students engaging well with the problem which is always important 
behaviour, especially in science and engineering. There is some evidence that 
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although students found the problems easy to understand this did not necessarily 
lead to credit (   0.31) although there is again a link to the ease with which an 
answer was chosen (0.46). 

 
 

4.   Linking the mathematical world and the real world 
In trying to understand how students acquire mathematical modelling skills, 

appropriate to engineering, science and technology, several consistent behaviours 
are identified through our assessment and evaluation strategies. Some differences 
in application have revealed common outcomes. This research suggests that 
students are weak at linking the mathematical world and the real world, thus 
supporting a view that students need much stronger experiences in building real 
world mathematical world connections. The weakness in students linking real 
world and mathematics which has been reported in other studies [9, 10], can be 
addressed straightforwardly. It is not difficult to provide experiences in this 
transition; one example, among many, is given by Watson [25] who shows how 
probability may be introduced and developed in Australian  schools through 
newspapers and the media. It is clear also that teaching and learning styles need 
to focus more strongly on abstraction and the formulation of the mathematical 
model [10]. In a review of existing research on the teaching and learning of 
applications and modelling, Niss *26+ found that students’ capability on applica- 
tions and modelling tasks was likely to be influenced by the teaching approach, the 
context and situation in which the mathematical modelling task is embedded, 
student and teacher motivation, engagement with and attitudes towards modelling 
work, and the amount of effortful practice and experience students had on 
modelling tasks. 

Since groupwork and projects are a common feature of undergraduate pro- 
grammes in engineering science and technology, it is appropriate to note the effect 
of groupwork and its organization on mathematical tasks. In an interesting study 
of 36 Year 5 children in Queensland, Cooper et al. [27] show that groupwork is 
effective for developing expertise in mathematical problem solving and also how 
defined roles for members of the group affect problem-solving performance. Of 
course, aspects of group behaviour also affect performance as Ikeda and Stephens 
[9] show among their Japanese students, where discussion of the tasks at hand 
within the group resulted in stronger achievement for the  group  in  modelling 
tasks. Some of the new research results reported here are undoubtedly affected 
by the context  chosen  for  the  multiple-choice  questions  and  both  the  real 
world experiences of the students and the mathematical knowledge held by the 
students. Solving problems in mathematical modelling requires a construction of 
meaning within modelling and acknowledging differing social contexts no less 
important than that described by Nathan [28] when reporting on the difficulties 
of engaging Maori children in mathematics when the language of the Maori does 
not readily lend itself to mathematical concepts developed for the most part in 
Europe. 

The development of expertise in a variety of fields, including an appropriately 
structured and organized knowledge base appears to take an extended time to 
develop and needs a basis of appropriate instruction with a large amount of moti- 
vated practice at suitable tasks with appropriate learning goals [29]. Students need 
to be engaged with the tasks and receive appropriately timed feedback [30–32]. 
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The move to expertise involves building on this basis to self-develop appropriate 
knowledge and skills [29]. 

In the development of mathematical modelling skills, there is a  need  for 
practice on more open tasks that are not part-mathematized already, in a realistic 
context. Students’ knowledge of relevant aspects of the real world also influences 
their ability to model [33]. Klymchuk and  Zverkova  [10]  found  that  students 
across nine countries all tended to feel that they found moving from the real to 
the mathematical world difficult because they lacked such practice in application 
tasks. Teachers need to help students to see coherent links between the real-world 
context and the abstracted formalisms [34, p. 60]. It would also be helpful to 
analyse what subtasks are involved in the process of moving between the real and 
the mathematical world in the modelling process and which of these cause  the 
most difficulty [26]. 

The demands of assessment may influence student motivation and attitude. 
Klymchuk and Zverkova [10] also found that while most students found applica- 
tion problems more interesting, more than half of the students preferred tests 
to consist of pure mathematics problems because they were easier to pass,  and 
with application problems they had difficulty moving from the word problem to  
mathematical language. Interestingly at a few (unspecified) universities almost all 
the students actually preferred application problems in tests despite considering 
them harder. This suggests the need to investigate the possibility of variation in 
motivation to practise aspects of modelling skills perceived as more difficult 
(involving moving between the real world and the mathematical world), perhaps 
depending on the cultural and educational environment, including assessment 
practices. 
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